,

Onward Assist

MPIN: MP69014

Sign in to view price

MEDICAL IMAGING + MACHINE LEARNING

Intra-treatment Tumor assessment is a critical step to evaluate the effect of cancer treatment being adminstered and understand the need to either continue with the same or make changes to the protocol.


Ask for Quote

MEDICAL IMAGING + MACHINE LEARNING

Intra-treatment Tumor assessment is a critical step to evaluate the effect of cancer treatment being adminstered and understand the need to either continue with the same or make changes to the protocol. The tumor tracking tool for treatment decision support tries to augment RECIST scoring for accurate estimate of tumor response. Combined with cross-modality analysis, this becomes a key implement available to Oncologists, Tumor boards.

The computer vision based algorithm tries to localize the spatial position of cancer. Further, it tries to find similar regions on the other views. Then, for each of the found suspicious regions, image based features are extracted. The trained model helps detect and score new patients.

CV-based algorithms have shown to successfully reduce unnecessary biopsies significantly, when used in conjunction with a radiologist reading.

COMPUTATIONAL PATHOLOGY

Developments in computational image analysis tools have positively impacted  predictive modelling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. These have brought  improvements in predictive modelling of tissue appearance and also deep learning schemes for both object detection and tissue classification

IMAGE ANALYSIS & MACHINE LEARNING

There has been substantial recent interest in combining and fusing multi-modality images, like radiology and proteomics, genomics based measurements with features extracted from digital pathology images towards better prognostication, and prediction of patient outcome.

PATIENT DATA ANALYTICS

Models can predict with reasonable accuracy in key challenge areas; how well a particular patient will adhere to a treatment plan; how the patient will respond to different modifications in the treatment plan; segment the population into different groups based on their behavior, and target the highest risk patient groups to improve their outcomes. ML models can go steps further into segmenting or clustering patients into risk-based sub-groups based on response patterns and the evolution of their clinical complexity.

Advanced tools will become possible in the future, whereby these can be used at the point of care by doctors to discuss available courses of treatment options with their patients, consider their potential efficacy projected at a cohort and personal level.

Recently view product

SHOPPING FOR A BUSINESS?

 

Sign up for Insider Pricing and get access to attractive discounted prices on commercially rated products as well as dedicated Account Representatives to manage your orders.

LOGIN

REGISTER

SHOPPING FOR A BUSINESS?

Sign up for Insider Pricing and get access to attractive discounted prices on commercially rated products as well as dedicated Account Representatives to manage your orders.

 

LOGIN

REGISTER

Ask for Quote

    Enter your Name*


    Enter your Email Id*

    Mobile Number*

    +91
    • United States+1
    • United Kingdom+44
    • Afghanistan (‫افغانستان‬‎)+93
    • Albania (Shqipëri)+355
    • Algeria (‫الجزائر‬‎)+213
    • American Samoa+1684
    • Andorra+376
    • Angola+244
    • Anguilla+1264
    • Antigua and Barbuda+1268
    • Argentina+54
    • Armenia (Հայաստան)+374
    • Aruba+297
    • Australia+61
    • Austria (Österreich)+43
    • Azerbaijan (Azərbaycan)+994
    • Bahamas+1242
    • Bahrain (‫البحرين‬‎)+973
    • Bangladesh (বাংলাদেশ)+880
    • Barbados+1246
    • Belarus (Беларусь)+375
    • Belgium (België)+32
    • Belize+501
    • Benin (Bénin)+229
    • Bermuda+1441
    • Bhutan (འབྲུག)+975
    • Bolivia+591
    • Bosnia and Herzegovina (Босна и Херцеговина)+387
    • Botswana+267
    • Brazil (Brasil)+55
    • British Indian Ocean Territory+246
    • British Virgin Islands+1284
    • Brunei+673
    • Bulgaria (България)+359
    • Burkina Faso+226
    • Burundi (Uburundi)+257
    • Cambodia (កម្ពុជា)+855
    • Cameroon (Cameroun)+237
    • Canada+1
    • Cape Verde (Kabu Verdi)+238
    • Caribbean Netherlands+599
    • Cayman Islands+1345
    • Central African Republic (République centrafricaine)+236
    • Chad (Tchad)+235
    • Chile+56
    • China (中国)+86
    • Christmas Island+61
    • Cocos (Keeling) Islands+61
    • Colombia+57
    • Comoros (‫جزر القمر‬‎)+269
    • Congo (DRC) (Jamhuri ya Kidemokrasia ya Kongo)+243
    • Congo (Republic) (Congo-Brazzaville)+242
    • Cook Islands+682
    • Costa Rica+506
    • Côte d’Ivoire+225
    • Croatia (Hrvatska)+385
    • Cuba+53
    • Curaçao+599
    • Cyprus (Κύπρος)+357
    • Czech Republic (Česká republika)+420
    • Denmark (Danmark)+45
    • Djibouti+253
    • Dominica+1767
    • Dominican Republic (República Dominicana)+1
    • Ecuador+593
    • Egypt (‫مصر‬‎)+20
    • El Salvador+503
    • Equatorial Guinea (Guinea Ecuatorial)+240
    • Eritrea+291
    • Estonia (Eesti)+372
    • Ethiopia+251
    • Falkland Islands (Islas Malvinas)+500
    • Faroe Islands (Føroyar)+298
    • Fiji+679
    • Finland (Suomi)+358
    • France+33
    • French Guiana (Guyane française)+594
    • French Polynesia (Polynésie française)+689
    • Gabon+241
    • Gambia+220
    • Georgia (საქართველო)+995
    • Germany (Deutschland)+49
    • Ghana (Gaana)+233
    • Gibraltar+350
    • Greece (Ελλάδα)+30
    • Greenland (Kalaallit Nunaat)+299
    • Grenada+1473
    • Guadeloupe+590
    • Guam+1671
    • Guatemala+502
    • Guernsey+44
    • Guinea (Guinée)+224
    • Guinea-Bissau (Guiné Bissau)+245
    • Guyana+592
    • Haiti+509
    • Honduras+504
    • Hong Kong (香港)+852
    • Hungary (Magyarország)+36
    • Iceland (Ísland)+354
    • India (भारत)+91
    • Indonesia+62
    • Iran (‫ایران‬‎)+98
    • Iraq (‫العراق‬‎)+964
    • Ireland+353
    • Isle of Man+44
    • Israel (‫ישראל‬‎)+972
    • Italy (Italia)+39
    • Jamaica+1
    • Japan (日本)+81
    • Jersey+44
    • Jordan (‫الأردن‬‎)+962
    • Kazakhstan (Казахстан)+7
    • Kenya+254
    • Kiribati+686
    • Kosovo+383
    • Kuwait (‫الكويت‬‎)+965
    • Kyrgyzstan (Кыргызстан)+996
    • Laos (ລາວ)+856
    • Latvia (Latvija)+371
    • Lebanon (‫لبنان‬‎)+961
    • Lesotho+266
    • Liberia+231
    • Libya (‫ليبيا‬‎)+218
    • Liechtenstein+423
    • Lithuania (Lietuva)+370
    • Luxembourg+352
    • Macau (澳門)+853
    • Macedonia (FYROM) (Македонија)+389
    • Madagascar (Madagasikara)+261
    • Malawi+265
    • Malaysia+60
    • Maldives+960
    • Mali+223
    • Malta+356
    • Marshall Islands+692
    • Martinique+596
    • Mauritania (‫موريتانيا‬‎)+222
    • Mauritius (Moris)+230
    • Mayotte+262
    • Mexico (México)+52
    • Micronesia+691
    • Moldova (Republica Moldova)+373
    • Monaco+377
    • Mongolia (Монгол)+976
    • Montenegro (Crna Gora)+382
    • Montserrat+1664
    • Morocco (‫المغرب‬‎)+212
    • Mozambique (Moçambique)+258
    • Myanmar (Burma) (မြန်မာ)+95
    • Namibia (Namibië)+264
    • Nauru+674
    • Nepal (नेपाल)+977
    • Netherlands (Nederland)+31
    • New Caledonia (Nouvelle-Calédonie)+687
    • New Zealand+64
    • Nicaragua+505
    • Niger (Nijar)+227
    • Nigeria+234
    • Niue+683
    • Norfolk Island+672
    • North Korea (조선 민주주의 인민 공화국)+850
    • Northern Mariana Islands+1670
    • Norway (Norge)+47
    • Oman (‫عُمان‬‎)+968
    • Pakistan (‫پاکستان‬‎)+92
    • Palau+680
    • Palestine (‫فلسطين‬‎)+970
    • Panama (Panamá)+507
    • Papua New Guinea+675
    • Paraguay+595
    • Peru (Perú)+51
    • Philippines+63
    • Poland (Polska)+48
    • Portugal+351
    • Puerto Rico+1
    • Qatar (‫قطر‬‎)+974
    • Réunion (La Réunion)+262
    • Romania (România)+40
    • Russia (Россия)+7
    • Rwanda+250
    • Saint Barthélemy+590
    • Saint Helena+290
    • Saint Kitts and Nevis+1869
    • Saint Lucia+1758
    • Saint Martin (Saint-Martin (partie française))+590
    • Saint Pierre and Miquelon (Saint-Pierre-et-Miquelon)+508
    • Saint Vincent and the Grenadines+1784
    • Samoa+685
    • San Marino+378
    • São Tomé and Príncipe (São Tomé e Príncipe)+239
    • Saudi Arabia (‫المملكة العربية السعودية‬‎)+966
    • Senegal (Sénégal)+221
    • Serbia (Србија)+381
    • Seychelles+248
    • Sierra Leone+232
    • Singapore+65
    • Sint Maarten+1721
    • Slovakia (Slovensko)+421
    • Slovenia (Slovenija)+386
    • Solomon Islands+677
    • Somalia (Soomaaliya)+252
    • South Africa+27
    • South Korea (대한민국)+82
    • South Sudan (‫جنوب السودان‬‎)+211
    • Spain (España)+34
    • Sri Lanka (ශ්‍රී ලංකාව)+94
    • Sudan (‫السودان‬‎)+249
    • Suriname+597
    • Svalbard and Jan Mayen+47
    • Swaziland+268
    • Sweden (Sverige)+46
    • Switzerland (Schweiz)+41
    • Syria (‫سوريا‬‎)+963
    • Taiwan (台灣)+886
    • Tajikistan+992
    • Tanzania+255
    • Thailand (ไทย)+66
    • Timor-Leste+670
    • Togo+228
    • Tokelau+690
    • Tonga+676
    • Trinidad and Tobago+1868
    • Tunisia (‫تونس‬‎)+216
    • Turkey (Türkiye)+90
    • Turkmenistan+993
    • Turks and Caicos Islands+1649
    • Tuvalu+688
    • U.S. Virgin Islands+1340
    • Uganda+256
    • Ukraine (Україна)+380
    • United Arab Emirates (‫الإمارات العربية المتحدة‬‎)+971
    • United Kingdom+44
    • United States+1
    • Uruguay+598
    • Uzbekistan (Oʻzbekiston)+998
    • Vanuatu+678
    • Vatican City (Città del Vaticano)+39
    • Venezuela+58
    • Vietnam (Việt Nam)+84
    • Wallis and Futuna (Wallis-et-Futuna)+681
    • Western Sahara (‫الصحراء الغربية‬‎)+212
    • Yemen (‫اليمن‬‎)+967
    • Zambia+260
    • Zimbabwe+263
    • Åland Islands+358

    Enter Message*